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Transcripts of people answering questions or carrying on dialogues auout
everyday matters are filled with plausible inferences—inferences that are not
certain, but that make sense. The same patterns of inferences occur in many
different contexts. Often, in forming these inferences, people make general-
izations that are equally uncertain but nevertheless are useful guides to
reasoning. This article describes some important extensions to our earlier
description of a core theory of plausible reasoning, based in large part on a
new protocol study. The extensions are both data driven and theory driven.
The primary focus here is on the inductive inference patterns people use to
form plausible generalizations, that is, weakly held beliefs based on few
examples but annotated with the same forms of certainty and similarity
information that supported the inferential patterns described in our earlier
work. We also provide examples of qualitative reasoning with inequalities and
extend our formalism to cover that type of reasoning.

When looking at transcripts of people answering questions or carrying on
dialogues about everyday matters, one notes that their comments are filled
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with plausible inferences—inferences that are not certain, but that make
sense. It is striking that the same patterns of inferences occur in many
different contexts. For a number of years, we have been characterizing the
patterns of plausible inferences that occur in natural discourse and the
various factors (certainly parameters) that make people more or less certain
about the conclusions they are drawing (Baker, Burstein, & Collins, 1987;
Burstein & Collins, 1988; Carbonell & Collins, 1973; Collins, 1978; Collins
& Michalski, 1989; Collins, Warnock, Aiello, & Miller, 1975). In a recent
article (Collins & Michalski, 1989), we characterized a core theory of
plausible reasoning in terms of Michalski’s (1987) variable-valued logic
notation. This article introduces a learning theory based on plausible
generalization using the formalism developed by Collins and Michalski
(1989).

The work has been both data driven and theory driven. We began by
characterizing the different patterns of inferences that occur in natural
discourse. However, as we noticed relationships between different inference
types and the parameters that affect certainty among the different inference
types, we began identifying the overall structure of the plausible inference
space. This was done by identifying different patterns from data and then
generating new patterns that are variations of the patterns originally seen in
the data to determine whether these new sets also produce plausible
inferences. The overall goal, then, is to characterize a space of plausible
inferences that derives from human data.

We can illustrate the responses we analyzed in terms of two protocols
from the earlier study (Collins & Michalski, 1989). The first protocol comes
from a teaching dialogue on South American geography:

Protocol 1

Student: Is the Chaco the cattle country. I know the cattle country is
down there (referring to Argentina).

Tutor: 1 think it’s more sheep country. It’s like western Texas, so in
some sense I guess it’s cattle country.

At first, the tutor tentatively rejects the possibility of the Chaco as being
cattle country because it is sheep country. This is called a dissimilarity
transform in the theory; cattle country and sheep country are dissimilar
enough that the tutor thinks cattle are unlikely. However, a similarity
transform then leads to an affirmative conclusion, which partially counters
the initial negative conclusion. The Chaco is similar to western Texas with
respect to the variables that affect cattle raising (such as vegetation and
climate), so it might be possible to raise cattle there. This protocol illustrates
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how people combine evidence from different plausible inferences to reach a
final conclusion.

The second protocol illustrates a plausible deduction. It is from a series
of questions we asked different respondents (Collins, 1978).

Protocol 2
Q: Is Uruguay in the Andes Mountains?

A: I get mixed up on a lot of South American countries (pause). I'm
not even sure. [ forget where Uruguay is in South America. It’s a good
guess to say that it’s in the Andes Mountains because a lot of the
countries are.

The subject is making a plausible deduction called a specializaton
transform in the theory. He thinks that the Andes Mountains are in most
South American countries, so the mountains are likely to be in Uruguay.
Two certainty parameters in the theory show up here: The higher the
frequency of countries that have the Andes, and the more fypical Uruguay
is, the more certain the inference.

The extensions to the core theory of Collins and Michalski (1989)
described in this study are based on a new set of protocols collected as
subjects tried to reason about geographical attributes. This experiment
provided lengthy examples of plausible reasoning from given and unknown
information. The resulting protocols forced us to consider how people
reason about quantities using “less than” and “greater than” and how they
generalize to form new knowledge.

The second part of this article introduces a theory of generalization to
accompany our plausible inference theory. Learning and generalizing go
hand in hand with plausible inference for a variety of reasons. For instance,
we observed in our protocol experiments that many of the inferences the
subjects made were based on generalizations formed either while searching
for an answer to a question or while considering a related question in the
same session. Conversely, subjects often attempted to “verify,” or increase,
their certainty in their answers by looking for analogous examples with
similar conclusions. Upon finding such examples, they automatically
generalized the cases together rather than simply stating their conclusions
with more conviction.

We also believed it was important to describe a generalization theory for
our formalism to clarify our assumptions about the source of information
required for plausible inference patterns. Because our formalism uses
somewhat nonstandard representations that include frequency and likeli-
hood information, we found it necessary to show, at least in principle, how
that kind of information can be learned routinely.
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COMPARISON WITH OTHER WORK ON
UNCERTAIN REASONING

The theory we have developed has many similarities, at its lower levels, to
several of the more popular formalisms for evidential reasoning: Bayesian
inference (Pearl, 1988) and Dempster-Shafer theory (Dempster, 1967;
Shafer, 1976). However, as Pearl (1990) pointed out, Bayesian methods
require the specification of a complete probabilistic model that relates the
set of hypotheses to the set of anticipated observations. Although this
allows the model to be used to answer any probabilistic query covered by
the model, it goes against the notion of plausible reasoning, where one is
attempting to answer questions without having all of the pertinent infor-
mation and, therefore, one is reasoning essentially by analogy.
Dempster-Shafer theory, on the other hand, attempts to compute proba-
bilities of necessity and provability instead of probabilities of truth. In
principle, therefore, it is more like plausible reasoning. A major distinction
between that formalism and the plausible reasoning model presented here is
the introduction of different certainty parameters. By distinguishing and
reasoning about dominance and typicality in class/subclass relationship and
about the expected multiplicity of relationships and by combining these
with context-sensitive measures of similarity and inference rule certainty,
we are modeling the rich set of (sometimes conflicting) measures of
conceptual relationships that appear to be used by people in evaluating the
certainty of their inferences.

Another thread in this work that distinguishes it from these other
evidential combination theories is the importance of the notion of depen-
dencies. Dependencies are strongly related to Russell’s (1989) notion of
determinations. Both model a nonspecific relationship between concepts so
that, by inferential combination with an example, one can reason by
analogy to draw a plausible conclusion. This notion forms the basis of a
large fraction of the plausible inferences we have observed and is the
fundamental mechanism by which background knowledge of a general
nature is used to narrow the focus and provide a proper context for a variety
of plausible inferences. Dependencies are also critical to our proposed
extension of the core theory addressing issues of generalization. Used in this
vein, we show by protocol examples that dependencies are often used in
place of more specific causal rules to guide generalization in a manner much
like that of explanation-based generalization (DeJong & Mooney, 1986;
Mitchell, Keller, & Kedar-Cabelli, 1986). Note, though, that because depen-
dencies do not allow one to “prove” the generalized proposition in advance,
dependency-guided generalization is a form of nonmonotonic inference.

One of the key elements of our model of plausible inference is it reliance
on context-bounded measures of similarity in developing measures of
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inference certainty. There is an enormous body of literature on the subject
of similarity (e.g., the collection edited by Vosniadou & Ortony, 1989), and
we cannot hope to consider it all here. However, several points are worth
making. Our approach to computing similarity draws on the prototype-
based categorization model of Smith and Osherson (1984, 1989). By that
treatment, similarity was essentially a function of the number of shared and
nonshared attributes the two concepts, weighted by the salience of those
attributes. In our model, the salience of individual attributes and relations
is replaced by a context for each inference, usually based on the dependen-
cies guiding the inference. (See the examples in the next section, and Table
4 for further detail.)

We also introduced the use of multiplicity as a means of capturing
knowledge of the range of possible values for an attribute, to cover cases in
which one has knowledge that values exist that cannot be enumerated. This
model was implemented in Plausible Reasoning Simulation System (PRSS;
Baker, Burstein, & Collins, 1987). Although not explicitly considered in our
current model, the recent work of Cohen and Loiselle (1988) and Huhns
and Stephens (1989) on decompositions of semantic relations should
provide a mechanism for extending our theory to capture more fine-grained
similarities by acknowledging the contributions of “similar” but non-
identical relations.

Because of the general nature of our work in attempting to map out the
“space” of plausible inferences, we have not explicitly addressed the
processing issues related to control of plausible inference in great detail,
However, we believe that our use of dependencies to direct both the choices
of exemplars and the measurement of similarity in context provides a
foundation for describing many of the qualitative, context-specific mecha-
nisms involved in uncertain reasoning for particular problem-solving tasks,
as discussed with respect to expert systems by Cohen (1987). We are in
strong agreement with Cohen’s point, as embodied in his system on
Management of Uncertainty in Medicine (MUM), that people engaging in
plausible reasoning seek both confirming and disconfirming evidence and
will draw plausible conclusions in both lines of reasoning before combining
evidence to reach a conclusion.

Our assumptions about the role of memory in the search for dependencies
and analogs around which to form plausible inferences are perhaps most
compatible with cognitive models of induction in support of problem
solving like that illustrated by the Plausible Induction (PI) model described
by Holland, Holyoak, Nisbett, and Thagard (1987). In particular, a
directed form of spreading activation is assumed to control both the
consideration of relevant inference rules (implications and dependencies)
and the selection of useful analogs for purposes of induction and general-
ization. Clearly, however, the details of the PI model require significant



324  BURSTEIN, COLLINS, BAKER

extension to fully model the plausible inference and certainty combination
rules described here and in Collins and Michalski (1989).

THE CORE THEORY OF COLLINS AND MICHALSKI

The four types of expressions in the core theory of Collins and Michalski
(1989) are shown in Table 1. The first are simple statements consisting of a
descriptor (d) (e.g., means of locomotion) applied to an argument (a) (e.g.,
birds) and realized by a referent (r) e.g., flying). The brackets and dots
around the referent indicate that there may be other means of locomotion
for birds, such as walking. The second kind of expression involves one of
four relations: generalization (GEN), specialization (SPEC), similarity
(SIM), and dissimilarity (DIS). Each relational statement specifies a context
(CX) where the first variable is the domain over which typicality or
similarity is computed, and the second variable is the descriptor(s) with
respect to which typicality or similarity is computed. The last two examples
of relational statements represent the fact that ducks and geese are similar
in their habitats but dissimilar in neck length.

The other two types of expressions in Table 1 are mutual implications ana-.
mutual dependencies. A mutual implication specifies how one statement (or
compound statement) is related to another. The example states that warm
temperature and heavy rainfall imply rice growing and vice versa. A mutual

TABLE 1
Different Types of Expressions in the Core Theory

Statements (S)
d@@) =r
means-of-locomotion(birds) = (flying . . .}

Relational statements (R)
a, REL a, in CX (A,d) where REL = GEN, SPEC, SIM, or DIS
bird GEN robin in CX (birds, all characteristics)
chicken SPEC fowl in CS (birds, biological characteristics)
duck SIM goose in CX (birds, habitat)
duck DIS goose in CX (birds, neck length)

Mutual implications (I)
d@) =1, ===>4d, (@) = 1,
temperature(place) = warm & rainfall(place) = heavy <——>
grain(place) = rice

Mutual depindencies (D)
d,(a) «—> d,(a) _
average temperature (place) «——> latitude (place)
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dependency relates two terms for example, latitude (place) and temperature
(place). The example represents the belief that the average temperature of a
place is inversely related to its latitude.

Table 2 shows a pattern of eight statement transforms from the core
theory (Collins & Michalski, 1989). Given a person believes that the flowers
of England include daffodils and roses, the first four transforms all vary the
argument, England. Given no other information, it is a plausible inference
that daffodils and roses are flowers of Europe in general (a generalization
transform). Also, it is a plausible inference that Surrey, which is a small
county in England, has daffodils and roses (a specialization transform);
that Holland, which is similar to England in its climate, has daffodils and
roses (a similarity transform); and that Java, which is quite dissimilar to
England in climate, does not have daffodils and roses (a dissimilarity
transform).

The other four transforms vary the referent, daffodils and roses. If
daffodils and roses are flowers of England, it is plausible that most
temperate flowers grow there (a generalization transform), that yellow roses
grow there (a specialization transform), that peonies grow there (a similarity
transform), and that bougainvillea, a tropical plant, does not grow there (a
dissimilarity transform). These eight transforms are one of four classes of
plausible inference in the core theory (the other classes are illustrated in
Table 5).

One of the central concerns of the theory of Collins and Michalski (1989)
is to specify how different parameters affect the certainty that people draw
from their plausible inferences. Table 3 shows how different parameters
affect the certainty of the eight plausible inferences in Table 2.

e Typicality (7) affects GEN and SPEC transforms. The more typical
England is of Europe, or Surrey is of England, with respect to climate

TABLE 2
Eight Transforms on the Statement
“flower-type(England) = {daffodils, roses...}”

Argument-based transforms
(1) GEN flower-type(Europe) = {daffodils, roses . . .}
(2) SPEC flower-type(Surrey) = {daffodils, roses . . .}
(3) SIM  flower-type(Holland) = {daffodils, roses . . .}
(4) DIS  flower-type(Java) = {daffodils, roses . . .}

Referent-based transforms
(5) GEN flower-type(England) = {temperate flowers . . .}
(6) SPEC flower-type(England) = [yellow roses . . .}
(7) SIM  flower-type(England) = {peonies . . .}
(8) DIS  flower-type(England) = {bougainvillea . . .}
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TABLE 3
Effects of Different Parameters on Statement Transforms
Parameters
Transforms
(From Table 2) T g a ¢ 5 Ha i, Target Node
(1) GEN + 0 + + + + 0 Europe
Argument- (2) SPEC + 0 + + + 0 0 Surrey
based (3) SIM 0 + + + 0 + 0 Holland
(4) DIS 0 - + - 0 - 0 Brazil
(5) GEN + 0 + + + 0 + Tropical plants
Reference- (6) SPEC + 0 + + + 0 0 Yellow roses
based (7 SIM 0 + + + 0 0 + Peonies
(8) DIS 0 -~ + - 0 0 - Bougainvillea

Note. The certainty parameters are: 7 = typicality; ¢ = similarity; ¢ = frequency; 6 =
dominance; «, 8 = conditional liklihood; p = multiplicty (argument, referent); + = higher
values of parameter increase the certainty of the inference; — = higher values of parameter
decrease the certainty of the inference.

(or any variable that affects flower growing), the more certain is the
inference.

Similarity (o) affects the SIM and DIS transforms. Hence, the more
similar Holland is to England, and the less similar Java is to England,
with respect to climate, the more certain is the inference.

Conditional likelihood () reflects the degree to which climate (or any
variable that affects flower growing) determines what flowers are
grown in a place. The more climate affects flower growing, the more
certain are any of these inferences.

Frequency (¢) reflects the all/some distinction in logic but as a
continuous variable. When applied to an instance like England,
frequency makes sense only if it is the frequency of daffodils and roses
in different parts of England. The more frequent daffodils and roses
are in England, the more likely they are found in Europe, Surrey,
Holland, or even Java.

Dominance (8) applies to GEN and SPEC inferences and reflects the
degree the subset makes up a large part of the set. For example,
because Surrey is only a small part of England, the inference about
growing daffodils and roses is less certain than for southern England as
a whole.

Multiplicity of the argument (u,) reflects the degree to which more than
one country (the superordinate of the argument) has daffodils and
roses. Because many countries presumably have daffodils and roses, u;,
is high and the argument-based inferences are more certain (except for
the DIS inference).
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¢ Multiplicity of the referent (u,) reflects the degree to which'England has
more types of flowers (the superordinate of the referent) than daffodils
and roses. Because countries usually have many different types of
flowers, g, is high, and the referent-based inferences are more certain
(except for the DIS inference).

In addition to these seven parameters, the certainty of each of these
inferences is affected by the certainty () of the person’s belief in each of the
premises in the inference. For example, the more certain the person is that
England produces daffodils and roses and that flowers depend on climate,
the more certain the inference. These various parameters are described in
more detail in Collins and Michalski (1989).

Table 4 shows how two of the inferences shown previously are repre-
sented formally in the theory. The first shows the similarity transform from
Protocol 1 in which the tutor inferred that cattle might be raised in the
Chaco because that region is similar to western Texas. He must have been
certain that cattle were raised in Texas (v = high), that cattle are raised in
many places other than Texas (u, = high), and that different parts of
western Texas have cattle (¢ = high). He seemed to think that Chaco is at
least moderately similar (¢ = moderate) to western Texas with respect to
variables, such as vegetation, that determine whether a place can support
cattle raising (o« = moderate likelihood). He derived only fairly low
certainty (y = low) from this inference that cattle might be raised in the
Chaco.

TABLE 4
Examples of Formal Representation in the Core Theory

Similarity transform from Protocol |
livestock (western Texas) = cattle :y = high, u, = high, ¢ = high
Chaco SIM western Texas in CX (region, vegetation)
:y = moderate, ¢ = moderate
vegetation (region) €<——> livestock (region) :a = moderate, v = high
Chaco, western Texas SPEC region v = high

livestock (Chaco) = cattle vy = moderate

Specialization transform from Protocol 2
mountains (South American country) = Andes :¢ = moderate, v = high
Uruguay SPEC South American country
in CX (country, all characteristics) :7 = high
characteristics (country) €<——> mountains (country)
:a = low, y = high
Uruguay, South American country SPEC country iy = high

mountains (Uruguay) = Andes: v = moderate
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In general, when an inference involves a dependency, the relationships
between terms (GEN, SPEC, SIM, DIF) are specified within a context,
denoted by CX, that restricts the attributes compared with those related
by the dependency governing the inference. For example, in the similar-
ity transform example in Table 4, the dependency between vegetation
and livestock of a region guides the comparison of Chaco and western
Texas. Because the inference concludes a fact about the livestock of
Chaco, the comparison is made on the types of vegetation in the two
regions. The overall certainty of the conclusion will vary depending on the
typicality or similarity between the related terms in that context, not simply
with respect to overall typicality or similarity (which is written as “all
characteristics™).

The second inference shown is from Protocol 2 where the respondent
inferred that the Andes Mountains might be in Uruguay. He thought that
the Andes Mountains are in most South American countries, so frequency
(¢) was at least moderate, and his certainty (y) about that was fairly high.
He knew Uruguay is a very typical South American country in most respects
(r = high), but that has only a weak relation to whether a particular
mountain range is there (@« = low). So he concluded with moderate
certainty that the Andes Mountains are in Uruguay.

There are three other classes of plausible inferences in the core theory
developed by Collins and Michalski (1989), which are exemplified in Table
5. First, there are derivations from implications and dependencies. For
example, if a person believes warm places with heavy rainfall produce rice
and that the Amazon River basin is warm and has heavy rainfall, one might
infer that rice is probably grown there. Second, there are transitivity
inferences on implications and dependencies. For example, if one believes
that the humidity of a place is directly related to its average temperature and
that the average temperature of a place is inversely related to its latitude,
then one might plausibly infer that humidity of a place is inversely related
to its latitude. Third, there are transforms on implications and dependen-
cies. For example, if one believes that places with a subtropical climate
produce oranges and that citrus fruit is a GEN of oranges, then one might
infer that places, in general, with subtropical climates produce citrus fruits.
The different variants of these three classes of inferences are detailed in
Collins and Michalski (1989).

This summarizes the core theory developed earlier. Subsequent to the
development of the core theory, we conducted an experiment using a
technique developed by Baker, Burstein, and Collins (1987), which is
described in the section An Experiment on Human Plausible Reasoning.
The findings from the experiment have led to a generalization theory that
we described in the section Extensions To the Core Theory.
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TABLE 5
Examples of Other Classes of Plausible inferences in the Core Theory

Derivations from implications and dependencies
temperature(place) = warm & rainfall(place) = heavy <——>

grain(place) = rice ‘&, o, = moderate, v,, y, = high
temperature(Amazon) = warm :y = high, ¢ = moderate
rainfall(Amazon) = heavy »y = high, ¢ = high
Amazon SPEC place 1y = high
grain(Amazon) = rice 1y = moderate

Transitivity inferences on implications and dependencies
humidity (place) <t average temperature (place)
i« = moderate, § = moderate, y = high
average temperature (place) <—> latitude (place)
i« = moderate, § = moderate, vy = high

humidity (place) «—> latitude (place)
:a = low, § = low, v = high

Transforms on implications and dependencies
climate (place) = subtropical <—=—> fruit (place) = {oranges . . .}
i = moderate, § = moderate, v = high
citrus fruit GEN oranges in CX (fruit, growing conditions)
»y = high, 7 = high
growing conditions (fruit) «<—> place (fruit)
:a¢ = high, 8 = high, v = high

climate (place) = subtropical <——== fuit (place) = [citrus fruit . . .]
i = moderate, 3 = moderate, vy = high

AN EXPERIMENT ON HUMAN
PLAUSIBLE REASONING

As we argued in the earlier article (Collins & Michalski, 1989), problems
arise in constructing a theory of plausible reasoning from considering
people’s answers to questions. Three problems discussed in the earlier article
were: (1) it is a highly inferential, post hoc analysis, (2) the theory is likely
to be underconstrained because any constraints operating on the invocation
of inferences are not apparent in the protocols, and (3) it is possible that the
answers are produced by some other inferential process and that the verbal
answers are mere rationalizations. Therefore, we argued that to test the
theory it is necessary to compare human reasoning to a computer simulation
of the model (Baker, Burstein, & Collins, 1987; Burstein & Collins, 1988)
over the same data base. To do this, we gave human subjects a partially
specified matrix of geographical variables crossed by countries, shown in
Table 6, that we had developed for the computer simulation. Then, we
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interviewed five different scientists (who were not geographers) as they
attempted to fill in the missing cells in the matrix.

Subjects were shown the entire matrix and asked to fill in the missing
cells, in whatever order they chose. They were asked to verbalize their
reasoning as they tried to fill in each cell and were prompted to expand on
that reasoning anytime the reasoning was unclear. The sessions varied in
length from Y2 hr to 1% hr for different subjects. Each session was recorded
on audio tape and transcribed.

Although the task for subjects was less natural than the teaching dialogue
and question answering tasks used earlier, we think much of the flavor of
natural plausible reasoning was captured by the task. There are two reasons
we believe this is so: First, the same kinds of inference forms that we have
discussed in earlier studies (Collins, 1978; Collins & Michalski, 1989) were
predominant in the reasoning on this task. Second, the subjects talked quite
naturally and at length about why they made their guesses, so there does not
seem to be anything artificial about the discourse they produced. The task
did have two aspects that differentiated it from protocols we previously
collected. Because the matrix was in front of the subjects, they could
consider more cases and variables than the one or two usually possible.
Second, because the subjects were asked a number of questions with respect
to the same set of variables, they accumulated more knowledge about the
same topic area in this context than usual. So, these protocols had more of
a flavor of scientific investigation to form generalizations than earlier
protocols.

In analyzing the transcripts of these sessions, we sought to identify and
formalize as many of the plausible inferences as we could rind, each time
considering whether the formal theory, as described in Collins and
Michalski (1989) accounted for the observed behavior. Where there were
discrepancies, we considered how the theory was inadequate and considered
possible extensions and their ramifications. This section discusses some
selected samples of these protocols and the issues they raised.

A Sample Protocol

One example of an issue that arises in plausible reasoning is found in the
protocol of a subject (Subject 1) who tried to use the value for the amount
of available fresh water supply in [taly to reason backward to infer the value
for precipitation in Italy. In the matrix, two variables directly affected
water supply. The principal variable was a qualitative value (light, moder-
ate, abundant) for the average amount of precipitation of the country. The
second variable indicated whether there were or were not rivers in the
country (yes or no). For Italy, the water supply was listed as being
moderate, and the column labeled Has River? had the value Yes.
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Protocol 3

S1: Let’s go back and do Italy first then. . . . What the mountains tell
you is that increases the precipitation. And the Mediterranean climate
tells you that it doesn’t typically have a lot; Mediterraneans tend to be
fairly dry climates. So my guess about Italy is that it probably . . . but
the fresh water supply also implies . . . well it could get its fresh water
all from the rivers, so the moderate fresh water supply . . . because
with Egypt had moderate and that other one I inferred was moderate.
My inclination would be to say that implies that there is not a lot of
rainfall, okay. But the mountains imply that there is rainfall, okay. So
that leads me to . . . I’m not sure what variables I have for rainfall,
very light and light, so I’d go for light.

There are several inferences taking place here. In the first part of this
response, the subject focused on the evidence that the Italian climate was
Mediterranean and that there were mountains. The Mediterranean climate
led the subject to infer that Italy had limited precipitation, whereas the
presence of mountains indicated that there would be more rain than other,
similar, lowland areas with the same general climate. Both of these
inferences are derivations from implications (see Table 5), although the
second inference requires an extension to the theory that we come back to
shortly.

In the second half of the response, the subject based his inferences on the
evidence that the fresh water supply attributed to Italy was moderate and
that there were rivers. As described earlier, both rivers and precipitation are
contributing factors to water supply. There are two kinds of uncertain
information here. One is the question of each factor’s contribution to
overall water supply, a question for which the subject presumably had lit*le
direct knowledge. The other problem is the lack of information, even
qualitative, on the amount of water available from rivers. The matrix
provided only that there were some rivers.

It appears from the pattern of this subject’s protocols, and from
subsequent questioning of the subject, that he normally treated water
supply as if it were directly dependent on precipitation, independently of the
presence of rivers. In general, either precipitation or rivers can account for
the water supply of a place, and this subject generally assumed water supply
was directly correlated with precipitation, unless there was evidence to the
contrary. This led to the incomplete comment “but the fresh water supply
also implies. . . .” Later questioning confirmed that he was starting to say
that the moderate fresh water supply indicated moderate precipitation, a
backward, abductive inference from the dependency. This was quickly
followed by the comparison that Egypt had moderate water supply even
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though the precipitation there was very light because there was a river.
Thus, the analogy to Egypt supported the conclusion that the precipitation
was very light. By combining evidence from three sources: the analogy to
Egypt, the presence of mountains, and the Mediterranean climate, the
subject concluded that the precipitation was probably light.

This reasoning is formalized as follows:

Terrain(place) = mountains «——> Precipitation(place) > “normal”
v = moderate, « = moderate
Terrain(Italy) = {mountains . . .}: v = high, u, = high, ¢ = moderate

(1*) Precipitation(Italy) > “normal” y = moderate

Climate(place) = Mediterranean <——> Precipitation(place) = light:
v = high, & = high
Climate(Italy) = Mediterranean: v = high, g, = high, ¢ = high

(2) Precipitation(Italy) = light: y = high

Precipitation(place) «<¥—> Water-supply(place)
:8 = moderate, v = high
Water-supply(Italy) = moderate: v = high, p, = high, ¢ = high

(3) Precipitation(Italy) = moderate: v = moderate

Precipitation(place) <> Water-supply(place)

:a = high, 8 = moderate, v = high
Has-rivers(place) <t Water-supply(place)

;o = moderate, § = low-moderate, v = high
Water-supply(Italy) = moderate: y = high, u, = high, ¢ = high
Has-rivers(Italy) = yes: v = high, g, = high

(4*) Precipitation(Italy) = moderate: v = low (Discount 3)

Water-supply(Egypt = moderate: v = high, g, = high, ¢ = moderate
Water-supply(Italy) = moderate: v = high, u, = high, ¢ = high
Has-rivers(Egypt) = yes: v = high, u, = high, ¢ = moderate
Has-rivers(Italy) = yes: v high, p, = high, ¢ = high

(5*) Italy SIM Egypt in CX(countries, Has-rivers & Water-supply):
v = high, ¢ = high

Precipitation(place) OR Has-rivers(place) <t Wat :r-supply(place)
:ay, a, = high, 3,, 8, = moderate, v = high
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Italy SIM Egypt in CX(countries, Has-rivers & Water-supply)
:v = high, ¢ = high (from 5)
Precipitation(Egypt) = very light: v = high, u, = high, ¢ = high

(6) Precipitation(Italy) = very light: v = moderate

Precipitation(Italy) > “normal”: v = moderate (from 1)
Precipitation(Italy) = light: 4 = high (from 2)
Precipitation(Italy) = very light: v = moderate (from 6)

(7*) Precipitation(Italy) = light: ¥ = moderate-high

By this analysis, there are several issues raised in the protocol that are not
specifically covered by the core theory (indicated by *). The first is the use
in Inferences 1 and 7 of inequalities rather than equal signs. The general
issue of continuous variables and inequalities will be discussed later.

The first inference (1*) also raises an issue for the theory of Collins and
Michalski (1989) that is implicit in the use of default values in the frame
theory of Minsky (1975). This inference was a kind of reasoning based on
a norm or default value. The logic of the reasoning is this: Whatever is
determined to be the normal value of rainfall in a place based on variables
other than mountains, mountains tends to make the rainfall higher. So, if
Mediterranean climates have light rainfall, the mountains make the rainfall
greater than light. “Normal” is a “dummy value” for the precipitation
variable used to carry forward the reasoning. This dummy value is filled in
by Inferences 2 and 6, and the average value computed from those
inferences is adjusted upward in Inference 7 to incorporate the adjustment
specified in (1*).

A third problem for the core theory occurs in Inference 4, where “counter
evidence” to Inference 3 is considered. This inference type has been called
a functional alternative meta-inference in Collins (1978) and is quite
common (Pearl, 1987). The pattern occurs when there are several variables
that independently influence a dependent variable. This can be written
either as:

d,(a) OR d,(a) <—> dy(a)

or, equivalently, but staying within the syntax of the original core theory
as two separate dependencies

d,(a) «—> d;(a) and dy(a) «——> d;(a)

Suppose an inference has been made from a dependency to infer a value
for the independent variables as follows:



PLAUSIBLE GENERALIZATION 335

d(a) «—> d,(a)
ds(a) =r for r € {high, medium, low}

d@ =r

Then suppose independent evidence shows that d,(a) = r, accounting for
d;(a) = r by different means. By a functional alternative meta-inference,
this invalidates or drastically reduces the certainty of the original inference
that concluded d,(a) = r. Thus, in the protocol, the discovery that Italy has
rivers and that this accounts for Italy’s moderate water supply (by analogy
to Egypt), thus, decreases the certainty of Inference 3 that Italy’s moderate
water supply implies that it has moderate precipitation. This rule is
essentially an application of Occam’s razor to plausible inferences with
dependencies. it does not constitute evidence that the original inference was
wrong, just that the evidence used to make the inference can be accounted
for by other means. The set of meta-inferences is described most fully in
Collins (1978). The set is not included in the formalized core theory of
Collins and Michalski (1989), so a full treatment of this and the other
meta-inferences observed in the protocols is still an open problem.

The fourth issue raised occurs in Inference 6 where the subject makes a
generalization about how Italy and Egypt are similar. This rule, called an
initial generalization to SIM, is part of the new generalization theory and
appears in Table 8 as Rule 1.

Examples of Plausible Generalization

The next portion of the protocol of Subject 1 illustrates a new component
of the theory, the formation of a new implication from the water supply
variables for Italy and Egypt and how that knowledge is used to guide his
inferences about Louisiana. In the matrix, Louisiana was given as having a
subtropical climate, abundant water supply, rivers, and a terrain of
lowlands and plains.

Protocol 4

S1: Louisiana. . . . Precipitation, what is the precipitation? So the
places with just a river and very little rainfall were moderate in their
fresh water supply, and this is abundant. Now, unfortunately that is
a case where [ really know that Louisiana has a lot of rainfall. But that
would be the nature of my inference, that it at least has a moderate
precipitation . . . from the fresh water supply.
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This protocol reveals that sometime between the earlier protocol, in
which Subject 1 reasoned about Egypt and Italy, and this protocol he made
a generalization that what was true of Egypt and Italy was true of all places.
The generalization from Egypt and Italy is formalized as follows:

Has-river(place) & Precipitation(place) Water-supply(place)
Has-river(Egypt) = yes

Precipitation(Egypt) = very light

Water-supply(Egypt) = moderate

Has-river(Italy) = yes

Precipitation(Italy) = light (by inference 7 above)
Water-supply(Italy) = moderate)

(8) Has-river(place) = yes & Precipitation(place) = light
«—— Water-supply(place) = moderate

This generalization is one of the new rules, refining a dependency to form
an implication (Table 10, Rule 3), described in the section Extensions to the
Core Theory. Generalizations like Inference 8, where an existing depen-
dency is combined with specific examples to form an intermediate statement
(the implication), are essentially the analogs in our plausible reasoning
theory of the “chunking” process in SOAR (Laird, Rosenbloom, & Newell,
1986), and explanation-based generalizations as described by DeJong (1981)
and Mitchell (1983). All of these generalization mechanisms hinge on the
combination of general causal or explanatory background knowledge with
a new specific case or cases to form a new, potentially more useful general
rule. We call this class of generalizations refinements.

Reasoning With Inequalities

Once the generalization just described has been formed, the protocol given
above shows how it is used. The inference is basically that places with rivers
and a little rainfall have moderate water supply, so places with abundant
water supply must get more rain. Louisiana’s abundant water supply, being
greater than both Egypt’s and Italy’s, means that it should have greater
precipitation.

Has-river(place) & Precipitation(place) <> Water-supply(place)
Has-river(place) = yes & Precipitation(place) = light
«~—— Water-supply(place) = moderate
Has-river(Louisiana) = yes
Water-supply(Louisiana) = abundant (or > moderate)

(9) Precipitation(Louisiana) > light (or = moderate)
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In Protocol 4, the subject reached the conclusion that because Louisiana
had an abundant water supply, it has “at least moderate” precipitation. In
the formalization of this inference, we describe the pattern as predicting
simply that it is “greater than light,” light being the corresponding value in
the implication. We take these as equivalent with respect to a {low, medium,
high} scale. (For precipitation, the term /ight corresponds to the more
neutral referent Jow, and abundant is the same as high.)

This is an example of a class of inferences that was not explicitly dealt
with in the original core theory. The issue is one of reasoning with
inequalities on continuous or ordered variables, in conjunction with
dependencies between those types of variables. These inferences all depend
on the presence of a specified dependency, which is a dependency labeled
with a + or — to indicate that an increase or decrease in the values for a
term on one side has a corresponding positive or negative effect on the
other. These inferences are formulated in the section Reasoning With
Ordered Variables and Inequalities.

Reasoning Using Multiple Dependent Factors

When considering which cereal grains can be grown in different places,
subjects were faced with a situation where all of the descriptors in the
matrix are potentially relevant to some degree. Water supply, climate, soil
type, and terrain all directly influence what grains are grown, and the other
variables in the matrix contribute to those four.

When subjects made inferences where a number of contributing factors
were known, the pattern that emerged was quite consistent. The subjects
first formed generalizations and then used those generalizations to answer
the questions. These generalization inferences occurred quite frequently and
did not always help answer a specific question. At a procedural or strategic
level, we have observed two different paths to the formation of generali-
zations from multiple factors. The first is a generalization strategy based on
a dependency and two similar examples. This is really a form of guided
induction. Protocols 4 and 5 are clear examples of this. The second path is
the formation of a weak generalization based on a single example and a
dependency and then a refinement of that generalization as new confirming
examples are encountered.

In the generalization theory presented in the section Extensions to the
Core Theory, we treat these two paths as variants of the same general
induction strategy because we wanted to produce a universal set of
generalization rules. So, we assumed that the generalizations in Protocols 4
and 5 from two cases can be viewed as two-step inferences: refining a
dependency to form an implication (Table 10, Rule 3) based on one case and
refining an implication from positive evidence (Table 10, Rule 5) based on
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the other case. This eliminates the need of separate rules for one- and
two-case generalizations.

In Protocol S, Subject 1 searched for a way to answer questions on the
terrain of the West Indies.

Protocol 5

S1: In the West Indies ’m up to and its terrain . . . I don’t have any
good terrain inferences. Humid tropics. Red and Yellow [soil]. I can’t
infer, So, here we have another humid tropic with rice and corn and
we had one of those in Java. So humid, tropic climates seem to be
leading to rice and corn and abundant wet precipitation.

Subject 1 is making two inferences here. One is that humid, tropical
climates determine abundant precipitation, which is almost by definition.
The other is the generalization that these factors determine that the grains
grown are rice and corn. We formalize the latter inference in the next
paragraph. Because it is common knowledge that humid, tropical places are
hot and wet, our formalization of this inference includes the factors of
temperature, precipitation, and water supply as part of the generalization.

The generalization about rice and corn in this protocol is formalized as
follows: .

Climate(place) & Water-supply(place) & Precipitation(place) &
Season-description(place) & Soil-type(place) &
Temperature-range(place) & Terrain(place)

<—> QGrain-grown(place)

Climate(Java) = humid tropics

Precipitation(Java) = abundant

Temp-range(Java) = hot

Grain-grown(Java) = rice, corn

(10) Climate(place) = humid tropics
& Precipitation(place) = abundant
& Temp-range(place) = hot
<=—=> Grain-grown(place) = rice, corn: v,

Climate(place) = humid tropics

& Precipitation(place) = abundant & Temp-range(place) = hot
<= Grain-grown(place) = rice, corn: v, (from 10)
Climate(West Indies) = humid tropics

Precipitation(West Indies) = abundant

Temp-range(West Indies) = hot
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Grain-grown(West Indies) = rice, corn

(11) Climate(place) = humid tropics
& Precipitation(place) = abundant
& Temp-range(place) = hot
<= Grain-grown(place) = rice, corn: vy, > v,

Using Counter Evidence to Decrease
Generalization Certainty

Subject 2 similarly attempted to refine an implication and concluded that he
did not have enough evidence when reasoning about terrain in different
places. His example also includes several dif ferent implication generalization/
refinement rules that are part of the new generalization theory discussed in
the next section. The subject first voices the implication that if a place grows
corn it tends to be plains. The source of this implication has no basis at all
in the protocol, but our conjecture is that he applied previous knowledge of
the geographical feature of places that grow corn, such as Illinois and Iowa,
which are located on vast plains.

Protocol 6

E: What did you just figure out about the terrain of Angola or have
you decided that you don’t know?

S2: They grow corn. I would think normally that would tend to be
plains. Check it out here. So in Florida they grow corn and it’s planar.
And in Java they grow rice and corn and it’s mountainous and
lowlands. The lowlands could be plains I suppose. In Peru they grow
corn and it’s mountainous, so that doesn’t seem to be much of a help.
So I guess I can’t really conclude that on the whole it has plains. I’ll
skip it.

We formalize the first implication as having been formed by examples
from the midwestern United States, as follows:

Grain-grown(lowa) = corn
Terrain(lowa) = plains
Grain-grown(lllinois) = corn
Terrain(Illinois) = plains
Iowa, Illinois SPEC place

(11) Grain-grown(place) = corn Terrain(place) = plains: y = low
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This is a simple generalization based on common features (Table 10, Rule
1) to the effect that places with corn tend to be plains. Given the low
certainty of that conjecture, the subject decided to determine from the
matrix whether places listed there that produce corn are plains. The first
case he tried was Florida, and, indeed, its terrain had the value plains, so
this increased the certainty of the implication. We call this refining an
implication from positive evidence in the system of generalization patterns
described in the next section (Table 10, Rule 5):

Grain-grown(place) = corn <= Terrain(place) = plains: v = low
Grain-grown(Florida) = corn

Terrain(Florida) = plains

Florida SPEC place

(12) Grain-grown(place) = corn <——> Terrain(place) = plains:
v = moderate

Next, he considered the case of Java, and its terrain had the values of
mountains and lowlands. So, Java fit the implication, but increased his
certainty only very little if at all. Last, he considered the case of Peru (the
final place where corn was listed). The terrain in Peru had the value of
mountains, which is clearly distinct from the value of plains. We call the
inference about Peru refining an implication from negative evidence in the
generalization theory (Table 10, Rule 4):

Grain-grown(place) = corn Terrain(place) = plains: v = moderate
Grain-grown(Peru) = corn

Terrain(Peru) = mountains

mountains DIS plains

Peru SPEC place

(13) Grain-grown(place) = corn Terrain(place) = plains: y = very low

This case reduced his belief in the implication below threshold, much as
a DIS inference in the core theory cancels a positive inference on the same
question. The result is that he was unwilling to guess at the terrain of
Angola on the basis of its growing corn.

EXTENSIONS TO THE CORE THEORY

These protocol data, although consistent with the general framework of the
core theory developed by Collins and Michalski (1989), led us to extend the
theory to incorporate the way subjects induce new beliefs and reason with
“greater than” and “less than.”
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A Theory of Plausible Generalization

The generalization rules that are presented in Tables 7, 8, 9, and 10 are new
to the core theory. Some were clearly used in the protocols as subjects
created new beliefs. For example, Protocol 3 showed the subject forming a
new SIM statement by combining evidence from other sources, and
Protocols 4 through 6 showed subjects inducing new implications. Given
these cases, we constructed a core theory of generalization that incorporates
these cases into an overall structure that generates the four kinds of
expressions in the core theory. The attempt is to produce the minimal set of
generalizations that in combination accounts for these expression types
formed by people.

Table 7 shows our conjecture for the minimal set of generalizations
necessary to generate SPEC statements. The first rule simply allows the
inference that if some instance (or subclass) has a particularly diagnostic
feature of some class, then the instance is probably a member of the class.
The multiplicity of the reference u, is our measure of diagnosticity: If the
multiplicity is low, then not many other classes have that property. In the
example, we chose the S-curved neck as a diagnostic property of swans, but
we could have chosen the entire body shape. If something has the shape of
a swan, then it is probably a swan; though other evidence (as we shall see)
may lead one to back off that hypothesis.

The second rule in Table 7 shows how confirming evidence increases the
certainty of the inference. If one thinks swans are white and if an instance
(or subclass) believed to be a swan is white, then that increases certainty in
the hypothesis that the instance is a swan. Again, the increase in certainty
depends on the multiplicity of the referent white. The third rule shows the
parallel case of disconfirming evidence. If the object is black, that decreases
the certainty of it being a swan for a person who believes swans are white.
Generalizations to form GEN statements are a simple variant on these rules
for SPEC statements.

Table 8 shows the rules for forming SIM and DIS statements. The initial
generalization involves identifying a descriptor (or variable) for which two
cases have the same or similar referents and constructing the belief that the
two cases are similar on that descriptor. So, if Java and the West Indies
both include humid tropics, then one can infer they are generally similar
with respect to climate. The second rule parallels the SIM rule for the DIS
relation: If two cases differ on a particular descriptor, such as having short
versus long necks, one can form the statement that they are dissimilar in
neck length. Of course, it is possible to have both DIS and SIM statements
stored for the same cases (e.g., ducks and geese are similar with respect to
feet and dissimilar with respect to necks).

The next two rules in Table 8 allow for refinement of SIM and DIS
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TABLE 7
Generalizations for Form SEPC Statements

(1) Initial generalization to SPEC
@A) =r 2N
d@@) =r Y2

a SPEC A o= Qv v2)

neck shape (swan) = S-curved iy = high, g, = low
neck shape (x) = S-curved :y = high
x SPEC swan iy = low

(2) Refining a SPEC generalization for positive evidence
a SPEC A 1
d(A) =T :72) Br
d@@) =r Y3

a SPEC A =T + f(l‘r) Y2 73)

x SPEC swan vy

color (swan) = white ty = high, g, = low
color (x) = white 1y = high

x SPEC swan >y

(3) Refining a SPEC generalization for negative evidence
a SPEC A N

dA) =1, Yo Uy
d@@) =r, Y3
181 DIS 19 Yar O

a SPEC A v o=y = (e, v, Y2 Y15 Yas 0)

x SPEC swan 7]

color (swan) = white 1y = high, g, = low
color (x) = black y = high

black DIS white 1y = high, ¢ = low
x SPEC swan y <y,

statements to incorporate two or more descriptors. For example, if Java
and the West Indies are also similar in that both have abundant precipita-
tion, then this can be added to the set of descriptors for which they are
similar. The final rule allows for the generalization of the descriptors on
which two cases are related to a common superordinate descriptor. So, for
example, one might induce that Java and the West Indies are similar with
respect to all their climatological or geographical characteristics, based on
their similarity with respect to climate and precipitation.



TABLE 8
Generalizations to Form SIM and DIS Statements

(1) Initial generalization to SIM

da) =1, Yis By
d(@;) =1, Y2 Br2
r, SIMr, Y3, 0y

a;, 3, SPEC A 7, 75, va» 7s

a, SIM a, in CX (A,d)
10 = £,(v1s Bets Yoo Be2s Y3 O T T Y ¥s) ¥ = £

climate (Java) = humid tropics 1y = high, u. = low

climate (West Indies) = subtropical :y = high, p. = low

humid tropics SIM subtropical 1y = high, 0 = moderate
Java, West Indies SPEC places Y1, v2 = high, 7, 7, = high

Java SIM West Indies in CX (places, climate)
v = high, ¢ = moderate

(2) Initial generalization to DIS

d(@,) =r, Y1 Bry
d(@) =, Y25 Br2
r, DIST, Y3, 0y

a;, a, SPEC A 7, 75, 74 s

a, SIM a, in CX (A,d)
0= £ e Ve B2 Y30 00 T T Yar Y)Y = 101

necklength (duck) = short 1y = high, p, = low
necklength (goose) = long 1y = high, u, = low
short DIS long in CX (necks, length) :0 = low, y = high
duck, goose SPEC birds v, v2 = high, 7, 7, = high

duck DIS goose in CX (birds, necklength) :0 = low, y = high

(3) Refining a SIM generalization
a, SIM a, in CX (A, d)) 0y, T

dz(al) =n YY2r Br)
dz(az) =TI, Y30 B2
rSIMr, Yar 02
a, a SPEC A T T2 Y Ve

a, SIMa, in CX (A, d, & d,)
10 = £,001, ¥is Yar Bets V3o Be2s Yar G2y T1s 720 ¥sy Ye) ¥ = £,(v1)

Java SIM West Indies in CX (places, climate)

vy = high, 0 = moderate
precipitation (Java) = heavy :y = high, g, = low
precipitation (West Indies) = abundant »y = high, p, = low

(continued)

343
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TABLE 8 (Continued)

heavy SIM abundant in CX (precipitation, amount)
v = high, ¢ = high
Java, West Indies SPEC places :y,, v, = high, r;, 7, = high

Java SIM West Indijes in CX (places, climate & precipitation)
1y = high, ¢ = moderate

(4) Refining a DIS generalization
a, DISa,in CX (A, d) W0 Y

dy(a)) =1, 2> Bt
d2(a2) =TI, Y3 M2
r, DISr, Yar 02
a,, a, SPEC A Tis T2y Y50 Y6

a, DIS a, in CX (A, d;, & dy)
10 = 1,000 Y1 V2o Bets Y35 Bz Yas 020 T1o T2 Y50 ¥e) ¥ = f«,(‘)‘i)

ducks DIS goose in CX (birds, necklength): o = low, v = high
sound (ducks) = quack: y = high, p, = low

sound (geese) = honk: y = high, g, = how

quack DIS honk in CX (sounds, quality) :0 = low, ¥ = high
ducks, geese SPEC birds: v,, v, = high, 7|, 7, = high

ducks DIS geese in CX (birds, necklength & sound): ¢ = low, y = high

(5) Descriptor generalization
a, REL a, in CX(A, d, & d,) Yy O, Ty
d;, d, SPEC D Y25 Y3 T2s T3y

a,REL a, in CX(A,D) :y = {(y;, 0, 7{, 72, 73)
where REL is any of (SIM, DIS, GEN, or SPEC)

Java SIM West Indies in CX(places, climate, & precipitation)
1y = high, ¢ = moderate

climate, precipitation SPEC climatological characteristics
‘Y1, ¥z = high, 7, 7, = high

Java SIM West Indies in CX (places, climatological characteristics)
1y = high, ¢ = moderate

Table 9 presents a set of four generalization rules for forming statements.
The first rule is the simplest case of generalization from a subclass to a class.
The idea is that if one encounters a swam and it is white, one can infer that
swans in general are white. The parameter » represents the number of swans
encountered, be it one or a whole flock. Likewise, the second rule is the
referent generalization rule included among the statement substitutions in
Table 2.

The next two rules parallel the rules for refining evidence among the



TABLE 9
Statement Generalizations

(1) Argument generalization®

di@) =r Vi B By

A GEN a in CX (A, D(A)) VN

(D(A) «<——> d(A) 1, 3l

dA) =r o= Alyn 6 e v2, 708, @, 3)
color(swanl) = white iy = high, u, = high

swan GEN swanl in CX (swans, all characteristics)
vy = high, 7 = high, § = low

color (swan) = white 1y = moderate

(2) Referent generalization

d(@) = {r, .. .} Y, @, pe

R GEN 1, in CX (d, D(d)) Y2 7, 8

{D(d) «<—> A(d) ', v}

a SPEC A :v,

d@ ={R.. 3y =v — (v, par v20 7 6, va)

agricultural product (Honduras) = {bananas . . .}
iy = high, p, = moderate, ¢ =
moderate
Tropical fruits GEN bananas 1y = high, 7 = high, § = low
Climate (agricultural products) €«——>
Place (agricultrual products) 1y = high, o = high

Honduras SPEC place 1y = high
agricultrual product (Honduras) = {tropical fruits . . .}
v = high
(3) Refining for negative evidence
d(A) =1, b L
d@ =r, 62 V2 Y2
r, DISr, Y1, 0
a SPEC A g T, 6
_ i ;o V2
d(A) = fr, .. 9 = P % = "t

Y= f('Ylv Y2r Y3 Y4 05 Ty 5)

color(swan) = white o, =1

color(swanl) = black v = high

white DIS black iy = high, 0 = low

swanl SPEC swan 1y = high, 7 = low

color (swan) = {white, black . . .} ¢, < 1, ¢’ > 0,y = high

(continued)

345
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TABLE 9 (Continued)

(4) Refining for positive evidence

da) ={r, ..} by, b2, V1 My
d@@) =, Yo V2
a SPEC A s, T, 0
_ LGty by
d(A) = {r, 1, .. .} ) = ”l+"z'¢2_”1+”2,
v = (v, v2» v3, 0, 7, 8)
color (swan) = {white, black . . .} 10y, D2
color (swanl) = white 1y = high
swanl SPEC swan :y = high, 7 = high
color (swan) = {white, black . . .} 1, > ¢y, ¢’ < a2, ¥ = high

2From Table 7 in Collins and Michalski (1989).

SPEC generalizations. The third rule is a refinement for negative evidence.
If you think swans are white and you encounter a black swan, this may lead
to the idea that swans can be white or black. The frequencies one assigns to
white swans and black swans depends on the number (») of black and white
swans encountered as is shown by the formulas. The fourth rule is a
refinement for positive evidence, and it makes possible the updating of
frequencies of different referent subclasses.

Table 10 shows that the generalizations we conjecture are sufficient to
characterize the ways that humans create implications and dependencies.
The first two rules in the set show how the common features or the
contrasting features of two arguments can be used to construct implications
and dependencies. These two rules are used by Socratic tutors in choosing
cases for comparison by students (Collins & Stevens, 1982).

The first rule forms the hypothesis that if two arguments have two
features (or referents) in common, then the two features are linked in some
way. This is an uncertain inference. For example, of one believes that Japan
is in Asia and produces rice and that China is in Asia and produces rice, two
possible conclusions follow: One is the implication that if a place is in Asia,
it produces rice (and vice versa). The other is the dependency that the types
of grain grown in a place depend on which continent the place is located.

The second rule allows three different possible conclusions based on the
fact that two arguments have contrasting features (or referents) with respect
to two descriptors. For example, if one believes that South China grows rice
and that North China grows wheat, one might hypothesize three different
implications or dependencies. One is that if a place is warm, it grows rice
(and vice versa). Two is that if a place is cool, it grows wheat (and vice
versa). Three is the dependency that the grain grown depends on the



TABLE 10
Implication and Dependency Generalizations

(1) Generalization based on common features

di(a;) =1, Yo Hens Ba D1

dya) =r, Y3 e Ba2r P2

di(a) =1, Y3 b Had D3

dy(ay) =1, Vas Hrar Hasr Pa

a,, a, SPEC A Yar Ys» Ti» T2y 05, 03

dA) =1, ——=4d,A) =1, v = v s 90 7o 6),

a = f(vi, m, ¢, 7, 8), B = f.s(‘Yi» Hiv S5 Tir 8)

di(A) «<—> d, (A) o= L0 o b0 T 6),

a = f (v, w» 0 70, 6), B = f,,('yi, Bir D5 Ti 6)

grain(Japan) = rice v = high, u. = high, u, = high, ¢ = high
continent(Japan) = Asia v = high, u, = low, u, = high, ¢ = moderate
grain(China) = rice :y = high, u, = high, u, = high, ¢ = high
continent(China) = Asia vy = high, u, = low, u, = high, ¢ = high
Japan, China SPEC place vy, v2 = high, 7, 7, = high, §;, 8, = low

grain(place) = rice <—=> continent(place) = Asia

iy = low, @ = low, 8§ = moderate
grain(place) «——> continent(place)

1y = moderate, ¢ = low, § = moderate

(2) Generalization based on contrasting features

di(a) =, Y0 B Ban @4

dy@) =, V2r o2 Ha2r D2

di(ay) =1, V3 Koy B3 D3

dy(@) =1, Yar Hrar Hasr Pa

r, DISr, 1ys, 04

r, DIS 1, Yer 02

a,, a, SPEC A Y7 Yar T1y T2 01, 62

dd) =1 <=4 @A) =1, o= L0y m @45 7o 855 09,
a = fq('Yir His @i> Tis ‘Siv Ui)v B = fa('Yi) Hi» Dis Ti 6ir Ui)

dd) =n<——=4d, ) =r, v = L0 mo S0 70 85 0),
@ = fq('Yiv His is Tis 6iv o), B = fa('Yir His Pis Tis 5iv Ui)

d(A) «<——> d, (A) o= L e 9 76 6 0,

a = f(vy i, &, 71, 8, 0), B = fa(%v > by, T, 65, 07)

grain(South China) = rice »y = high, p, = low, u, = high, ¢ = high

temperature (South China) = warm 1y = high, g, = low, u, = high, ¢ = moderate
grain(North China) = wheat 1y = high, u, = moderate, u, = high, ¢ = moderate
temperature(North China) = cool 1y = high, . = moderate, u, = high,
¢ = moderate
rice DIS wheat iy = high, 0 = low
warm DIS cool 1y = high, 0 = low
{continued)
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South China, North China SPEC place  :y,, v, = high, r,, 7, = high, §,, 6, = low

grain(place) = rice <=——=> temperature(place) = warm

iy = low, a = low, 8 = moderate
grain(place) = wheat <——=> temperature(place) = cool

iy = low, a = low, 8 = moderate
grain(place) «——> temperature(place)

1y = moderate, « = low, # = moderate

(3) Refining a dependency to form an implication
d,(A) €«—> d,(A) Y o B

di(@ =r, Y25 ety Hal> 1
d@ =1, V35 Hras Basy B
a SPEC A W4 T, 6

dA) =1, e===d,A) =1,
v = v i 65 7, 6),
a = {0y mi» &3 7, 0), B = L5l 1, &, 7, 0)

moderate, o = low, 8 = moderate

grain(place) €«—> temperature(place) :y =

grain(Saskatchewan) = wheat iy = high, ¢ = high, ¢ = moderate

temperature(Saskatchewan) = cool :y = high, u, = moderate, p, = high,
¢ = moderate

Saskatchewan SPEC place 1y = high, 7 = high, § = low

gain(place) = wheat <=—=> temperature(place) = cool
1y = moderate, a = low, § = moderate

(4) Refining an implication from negative evidence

d(A) =1, <—>dA) =1, L YL o B
d,(a) =1, M2 ety Hans O
dy(a) =, P2, Y3 a2 Baze D2
a SPEC A a7, 8
ry DIS T, Vs, O
d,(A) = 1, <———> dz(A) = [y, 1y} v = v, 1 @55 7, 0, 0), @, B
. _ r V2
¢l_v,+v2' 2—v1+vz

grain(place) = wheat <——=> temperature(place) = cool

1y = moderate, o = low, 8§ = moderate
grain(Italy) = wheat: y = high, u. = high, p, = high, ¢ = moderate
temperature(italy) = mild: v = high, x, = moderate, y, = high, & = moderate
mild DIS cool :y = high, ¢ = moderate
Italy SPEC place :y = high, 7 = high, § = low

grain(place) = wheat <———>
temperature(place) = {cool, ¢,/ = .5; mild, ¢, = .5}
1y = moderate, @ = low, 8 = moderate

(continued)
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TABLE 10 (Continued)

(5) Refining an implication from positive evidence
d,(A) =1, <—— dz(A) = {ry, 13} 10, by v Y O B

d;(@ =1, Yar Bets Bas $1
dy@) =1, W2 Yas beas Ba2r @2
a SPEC A Y4 Ty O
dy(A) =1, <—— dz(A) = {1, 14} o= v, o, @57, 8), , B
&) Gyt vy , by,
! v+ R e+ o,

grain(place) = wheat <——>
temperature(place) = {cool, ¢ = .5; mild, ¢ = .5}
iy = moderate, o = low, 8 = moderate
grain(North China) = wheat
iy = high, p,
temperature(North China) = cool
1y = high, 4, = moderate, p, = high, ¢ = moderate
North China SPEC place :y = high, r = high, § = low

high, u, = high, ¢ = moderate

grain(place) = wheat <——>
temperature(place) = {cool, ¢ = .7; mild, ¢ = .3}
1y = moderate, « = low, 8§ = moderate

(6) Generalizing an implication by referent combination

d@) =1, == d@) =, 1, .} 0 G2 v, YL o 8
Iy, Iy SPEC R Y2 Y T T2 511 b2
dia) 1r, =—=>d)@) = R o= L e &0 7o 8)

grain(place) = rice <—>
climate(place) = {subtropical, ¢ = .5, tropical, ¢ = .3)
1y = moderate, « = moderate, 3 = moderate
tropical, subtropical SPEC hot
Y1, ¥» = high, r,, , = high, §,, §, = moderate

grain(place) = rice <—> climate(place) = hot
1y = moderate, « = moderate, 3 = moderate

temperature of the place. These are somewhat more certain generalizations
than the common-feature generalizations but only marginally so. In gen-
eral, people want to adduce more evidence for either so that some threshold
of certainty can be achieved at which they are willing to consider seriously
such hypotheses.

The third rule was identified from the protocols where subjects instanti-
ated dependencies in terms of the referents they identified for particular
cases. In this way, the subjects formed new implications. In the example, if
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a person believes that temperature and grain are related and that
Saskatchewan, which is cool, produces wheat, the person might infer that,
in general, places that are cool produce wheat (and vice versa).

The next two rules are used to refine implications. They parallel the
earlier refinement rules for statements. Rule 4 refines an implication to
incorporate negative evidence. For example, if one believes that places that
produce wheat are cool (and vice versa) and one encounters Italy, which
produces wheat and which has a mild climate, then one might infer that
places that are cool or mild produce wheat, with frequencies representing
the number of cases of each type one has encountered. Rule 5 similarly
adjusts frequencies appropriately if one encounters positive evidence.

Rule 6 generalizes an implication by generalizing over the set of referents
covered in the consequent (or antecedent) of the implication. For example,
if places that grow rice are either tropical or subtropical, then one might
concluded that such places generally are hot.

We think these generalization rules incorporate all the ways that subjects
formed new statements in the experiments. However, we formulated the
rules to be as general as possible. People often make generalizations based
on what appears to be insufficient evidence, but they are constantly refining
their generalizations and often rejecting them as too uncertain to take
seriously. So, the rule set we developed will surely produce generalizations
no one will believe if applied willy nilly. People prevent themselves from
making inappropriate generalizations by using other knowledge inferen-
tially; that is, they restrict their generalizations to beliefs consistent with
what they know in general (see Collins & Michalski, 1989).

Reasoning With Ordered Variables and Inequalities

In analyzing the protocols from the experiment described in the previous
section, we extended our core theory to deal with the issue of continuous or
ordered variables and plausible reasoning with inequalities. The core theory
of Collins and Michalski (1989) treated all referents (values for terms) as
discrete values with no intrinsic relationships other than similarity and class
membership. Clearly, this was a simplification. Variables like altitude,
latitude, temperature, and even water supply take referents that can be
mapped onto numerical scales, given appropriate measurement techniques,
and they also may be expressed qualitatively using terms like low, medium,
and high. Given a set of measurements for any one of these attributes,
people quickly develop models of their normal ranges from observations,
and they develop approximate ranges on those scales that they can refer to
by using terms such as low, medium, and high. These qualitative terms are
treated as ordered, though they are not really mutually exclusive. Each
qualitative value stands for a range of distribution of measured values, and
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those ranges may overlap to some degree. For instance, the ranges covered
by low and medium might intersect in a small range called medium-low.

Ranges on ordered scales can be considered similar to the degree that they
overlap. When one range overlaps the median or midpoint of another range
and vice versa, then the two ranges can be considered highly similar. For
ranges and values that are not highly similar, we introduce the inequality
relations <, >, =<, and =. Although we have not systematically studied
how people interpret and compare these inexact ranges, for the sake of this
article, we define these relations as follows: The statement d(a) > r means
that the referent of d(a) is from the midpoint of range r upward. The
statement d(a) = r means that the referent of d(a) is from the lower limit of
range r, upward. Similarly, given d(a) = r, and d(b) = r,, d(a) > d(b) is
equivalent to r, > r,, which means that r, is dissimilar to r, because the
median value of r, is greater than the upper limit value of r, and the bottom
value of r, is greater than the median value of r, (see Figure 1).

Having introduced the notion of explicit orderings for referents that are
ranges on ordered scales, the core theory as determined so far can be
naturally extended to allow all plausible inferences that contain statements
of the form d(a) = r to also allow the = to be replaced by any of <, >,
<, and =. For example, in a SIM-based argument transform, we rewrite
the rule as:

d(a,) ~r

a, SIM a, in CX(A, D)
D(A) <—> d(A)

a,, a, SPEC A

d(a,) ~r where ~ was one of =, <, >, <, or >.

In addition to this slight reformulation of the inference rules of the core
theory, the introduction of inequalities yields some new generalization,

range of referents medians
d(a)=ra
d(b)=r p I -
L ]
fow high
d(a) > d(b)

FIGURE 1 Inequality between continuous ranges.
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transformation, and derivation inferences involving these orderings. All
new inferences involve specified dependencies [dependencies of the form
d,(A) dx(A) or d,(A) dy(A)], where increases or decreases in one referent
value have corresponding effects on another. Collins and Michalski (1989)
described rules for derivations from such dependencies between single
terms, for the cases where the referent values were expressed as low,
medium, and high. Basically, for a positive dependency, a low value on
d,(a) implies a low value on d,(a), medium goes to medium, and high to
high. For negative dependencies, low goes to high, medium to medium, and
high to low.

Table 11 shows the rules for creating inequalities with SIM-based
transforms on dependencies and implications. These rules are much like the
SIM-based referent transform rules described by Collins and Michalski
(1989). In the SIM-based transforms of the core theory, two arguments or
referents would be compared and found similar in a context fe.g., CX(A,
D)], related to the left side of the dependency. In the new rules for
generating inequalities from directed dependencies (Rules 1 and 2 of Table
11), the two arguments a, and a, are related by an inequality instead of by
similarity [as by d,(a;) < d,(a,)]. This makes sense because the notion of
comparison is simply being extended to encompass comparison on an
ordinal scale.

These rules extend to cases where several factors together determine some
descriptor d, (by either an additive or conjunctive dependency). In this kind
of generalization, it is assumed that other things are held constant. For
example, with Table 11, Rule 2, if altitude and temperature are inversely
correlated for places at similar latitudes, then low places (e.g., Miami)
should be warmer than high places (e.g., Mexico City) at similar latitudes
and vice versa. When some of these other features also vary, the inference
becomes less certain as a result of the reduced similarity of the two
arguments. Rules 1 and 2 in Table 11 cover the cases where a, SIM a, in the
context of these other descriptors d,". The result is that values for d,(a) and
d,(b) are ordered correspondingly for a positive dependency and are
ordered in the reverse direction for a negative dependency.

Another kind of inference with inequalities corresponds to a derivation
from an implication, as described in Collins and Michalski (1989). Rules 3
and 4 in Table 11 show these inference patterns. For example, Rule 3 can be
used with the dependency between precipitation, rivers, and water supply
discussed in the section A Sample Protocol: If places with light precipitation
and a river have a moderate water supply (as described for Egypt and Italy),
then one can conclude that a place like France with rivers and greater
amounts of precipitation has a greater overall water supply because of the
directed dependency bearing on water supply. The difference from the
normal derivations with implications is that there must also be a directed
dependency to specify the direction of change between terms.



TABLE 11
inequality-Generating Inferences

Inequality transforms with directed dependencies

d,(8) <F> dy(a) iy, @ di(A) <> dy(A) iy, e
di(A) & dy(A)* «—> dy(A) di(A) & dy{A)* <> dy(A)
Y2r Y3r G, Q3 Y2s Y3 025 3
a,, a, SPEC A: v, v5, 7\, 72 a,, a, SPEC A: v,, vs, 71, 72
a, SIM a, in CX(A, d,(A)*): v, 0, a, SIM a, in CX(A, dy(A)*): ve, 0,
di@) = 1y v s B di@) = 1y B Bar
di(@) ~ 1y Ty Heos Baz di(@2) ~ 1y s peas a2
dy(ar) = 13 179, Keas Has ds(@)) = 13 179y Beas Ma3
dy(a;) ~ ry iy = (v wi @, 70, ) dy(@) ~ " 3y = f(vis s @y Tis 0)

Notes: d,(A)* stands for all other terms that d;(A) depends on.
~ is one of <,>, <, or >, within a rule, and ~ ~ is its inverse,

altitude(place) «——>> temperature(place) in CX(places, latitude)

1y = high, « = moderate
altitude(place) & latitude(place) «—— temperature(place)

1y = high, a = high
Miami, Mexico City SPEC place: y = high, 7 = high, § = low
Miami SIM Mexico City in CX(places, latitude): y = high, ¢ = moderate
altitude(Mexico City) = high: vy = high, g, = low, p, = high
altitude(Miami) < high: ¥ = high, x4, = low, p, = high
temperature(Mexico City) = moderate: v = high, g, = low, g, = high

temperature(Miami) > moderate: y = high

Derivations from implications with directed dependencies

d,(A) <> dy(A) @

di(A) =1, & dy(A) = 1,* === dj(A) = 13 vy v 00 0
a SPEC A Yar Ty, O

dy(a) =1, VY5 Hris Mal

d(@ ~ 1, Ver M2y Ha2

dy(@) ~ 1, Y= fy(')’iv Hiy Qs Ty 07)

d;(A) «<——> d;(A) Y O

di(A) =1 & dy(A) = r,* = d\A) = T3 Y2y Y3y O, O
a SPEC A ar T1s 8

d(@) =1, sy By Hal

di(a) ~ 1, Yer Hr2s Maz

dy(@) ~ " 1y y = Ll i @ 7y 0)

Notes: d,(A) = r,* stands for all other terms in the implication.
~ is one of <,>, <, or =, within a rule, and ~ ~ is its inverse.

precipitation(place) & has-river(place) <t s water-supply(place)
Y1, ¥2 = high, a;, a; = high
precipitation(place) = very light & has-river(place) = yes
<——> water-supply(place) = moderate: v, v, = high, «,, «, = high
France SPEC place: y = high, 7 = high, § = low
has-river(France) = yes: v = high, g, = low, g, = high
precipitation(France) > very light: y = high, x4, = low, x, = high

water-supnlv(France) > moderate: ~ = hieh
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As previously mentioned, both of these inference forms have the
requirement that other relevant “contextual factors” are held constant. In
the dependency-based transform rules (Table 11, Rules 1 and 2), this is
captured in the requirement that a, and a, are similar in the context of other
terms affecting the target descriptor a;(A) [represented by d,(A) d;(A)]. In
the rule for a plausible derivation from an inequality and an implication,
this requirement is reflected in the need for the referents of all other terms
on the left-hand side of the implication [& d,(A) = r,. . . .] to be similar to
the corresponding referent of d,(a) for the target example a or ordered in
the same direction. In the example presented with the table, the inequality
derivation only works because France has rivers, as required by the
left-hand side of the implication.

There must also be ways of forming specified dependencies. The most
straightforward of these looks much like the formation of a dependency by
generalizing on contrasting features (see Table 9, Rule 2). This is shown in
Table 12 for the simple case of comparing attributes of two exemplars. As
an example of this type of generalization (Table 12, Rule 1), we show how
one might derive the dependency that the latitude of a place is inversely
correlated with its temperature. Comparing Alaska and Equador on these
variables, we see that Alaska has a much higher latitude and a much lower
average temperature than Equador. Generalizing on these facts gives the
negative dependency. Similar rules can be used to refine an unspecified
dependency, essentially using the dependency to select the attributes that
need to be compared. For instance, the generalization from Alaska and
Equador would be made more certain if it were known beforehand that a
dependency existed between latitude and temperature but that the form of
the relationship were unknown until the exact data were considered.

Another way to derive a directed dependency is by using two implications
that address the same pair of descriptors. These generalization rules are
similar to Rules 1 and 2, with pairs of statements rewritten as implications
over the Class A containing a, and a,. An example of Rule 3 is shown in
Table 12. As in the previous example, the referents of the corresponding
terms in the implications are placed in correspondence and their values
compared. Because the direction of shift from a tropical to a polar place is
opposite on the two descriptors, a negative dependency is formed.

The use of inequalities with qualitative values and other kinds of inexact
or “fuzzy” categories has been studied by Zadeh (1965) and others using his
theory. Our extension of the core theory to these kinds of statements and
inferences was quite natural, and many of the implications of this extension
were understood beforehand. Nonetheless, it raised a number of issues that
have yet to be resolved, some of which are touched on in the next section.
For example, there is a trade-off between the precision and certainty of a
referent value that pervades this kind of reasoning. We do not yet



TABLE 12
Generalizing Based on Inequalities

Generalizing to specified dependencies

di(@) = 102 Y1y Bers ar di(@) = 100 vy, By s

da@) = 3 2, #e2s Pa2 dy(@) = 120 Y2 tea pra2

di(ay) = 138 v3s B3, Has di(a2) = 13! v3s peas pa3

dy(a;) = 147 Y4y Hras Paa dy(a3) = 140 Yar Bras fas

a,, a, SPEC A: vs, v4, 71, T2, ), 65 ay, a, SPEC A! s, v6 T1» T2 815 65

I~ I3y I, ~ I3,

Ty =~ T4t 7Ys I ~ 7 T4 7

d(A) <F> dy(A) d,(A) <> dy(a)
o= Ll w70 8, @ = Elyvi i 700 80, B = falvis 24 700 8)

Note: ~ is one of <,>, <, or =, within a rule, and ~ ~ is its inverse.

latitude(Alaska) = high :y = high, g, = low, g, = high

temperature-range(Alaska) = cold: v = high, u, low, g, = high

latitude(Equador) = low vy = high, p, low, g, = high

temperature-range(Equador) = hot: y = high, g, low, g, = high
Equador, Alaska SPEC place  :v,, v, = high, 7|, 7, = low, §,, §, = low
hot > cold vy = high

low < high y = high

latitude(place) «<——> temperature-range(place)
iy = low, a = moderate, 3 = low

Generalizing implications to directed dependencies

di(Ay €«<—> d,(A): v, @, B, di(A) <> dy(A): vy, y, B,

dia) =r, ==—=>da) =1, dia) = r, <==>0d(a) = 1,
Y2, o2, By Y2, 02, B2

di(ay) =1, ==—>dy(a;) =1, di(a) =, ===>d)a) =1,
v3, A3, By Y3 a3, B

a,, a, SPEC A: v,, vs, 71, 72, 6, 62 a,, a, SPEC A: vy, vs, 715 72, 6, 6,

Iy ~ I3 7 o~ I3 yg

Iy ~ T4ty I~ Iy

4,(8) <> dy(A) d,(A) <> dy(A)

o= v s 7o 8, o = iy w7 8, B8 = flyis py 70 89

latitude(place) «——> temp-range(place) iy = low, @ = moderate, 8 = low
latitude(tropical-place) = low <= temp-range(tropical-place) = hot

iy = low, a = high, 8 = high
latitude(polar-region) = high <= temp-range(polar-region) = cold

iy = low, o« = high, 8 = low
tropical-place, polar-region SPEC place

v ¥2 = high, 7, 7, = low, §,, 6, = low
hot > cold 1y = high
[ow < high 1y = high

latitude(place) «——> temperature-range(place)
iy = low, o = high, 8 = moderated
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understand how and when people prefer a precise but uncertain answer as
opposed to an imprecise but more certain one. The purpose for which the
question was asked surely plays an important role here, but the mechanism
by which that affects people’s inference processes remains an open question.

CONCLUSION

This article has described some revisions to the core theory of human
plausible inference developed by Collins and Michalski (1989). As in that
earlier article, our work is aimed at formalizing the plausible inferences
observed in people’s answers to questions for which they do not have ready
answers. Both the theory described in this article and our discussion of some
as yet unresolved issues were motivated in large part by a protocol
experiment that was designed to bring forth more clearly people’s uses of
multiple sources of evidence in forming plausible conclusions. We present
examples of how this experimental evidence supported the introduction of
a mechanism for reasoning about inequalities and a reanalysis of backward
reasoning in the presence of multiple dependencies.

Another important result of the experiment was a clarification of the
need for an integrated theory of generalization to accompany the core
plausible reasoning theory. This was the subject of the second half of the
article, which included a number of patterns of plausible generalization and
generalization refinement, including rules for reducing the certainty of
generalizations in the presence of contradictory evidence.

In the revised theory, we addressed only those issues raised by the
experiment that we could find solutions for, There are a number of other
issues in the experiment and earlier protocols that we have not addressed.
We think they are amenable to the kind of analysis we have been using, but
the solutions were not readily apparent or we lacked the time to pursue
them. We enumerate them so that the reader can see what we have swept
under the rug for the time being:

1. Combining variables on one side of a dependency or implication. In
the experiment, subjects frequently reasoned backward or forward over
dependencies and implications where a number of variables (e.g., precipi-
tation and rivers) affected a particular variable (e.g., water supply).
Subjects treated the variables as if they were ORed together, as if they were
ANDed together, and sometimes as if they were additive. It is possible these
reasoning patterns can be handled by a single combination rule with
different o and 8 values. Alternatively, it may be necessary to develop a
slightly different set of plausible inference rules to handle each kind of
combination. We simply have not resolved the issue to our satisfaction.
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2. The trade-off between range and certainty. Subjects appear to trade
off certainty about a belief against the range of the referei.t. For example,
one might be very certain that the average rainfall in Louisiana is “at least
moderate,” somewhat less certain that it is “heavy,” still less certain that it
is between 40 and 60 in. a year. In other words, for any continuous variable,
subjects can always increase their certainty in a belief by extending *he range
of the referent. Currently, there is no way to incorporate such trade-offs in
the theory.

3. Merging of qualitative and quantitative reasoning. Sometimes, sub-
jects bring in various quantitative relationships to guide their qualitative
reasoning (e.g., the temperature of the Amazon jungle averages 85 °F, or |
mi in altitude affects temperature as much as 800 mi in latitude). There
needs to be a smooth method of incorporating such quantitative informa-
tion into the way humans reason plausibly.

4. Combining certainty parameters. Collins and Michalski (1989) care-
fully avoided specifying how people combine certainty parameters to arrive
at an overall certainty in the conclusion, In this article, we did specify how
the numeracy parameter » can logically be combined to derive frequency ¢.
It should be possible to develop a normative theory that combines all the
parameters specified in the theory; however, we have not attempted to do so
yet.

5. The extent parameter. Collins (1978) identified a parameter he called
“extent,” which was particularly prevalent in temporal and spatial infer-
ences. It is necessary because people have a notion of how far rainstorms
versus parades versus continents extend in space and how long they extend
in time. This notion is central to people’s reasoning about space and time,
but it also affects inferences in the core theory. For example, certain
internal organs are found in a wider range of animals than are horns or
colors. Therefore, a person is more likely to infer that an animal has a
gizzard because a similar animal has one than to infer that an animal has a
horn because a similar animal has one. We have not incorporated this
notion of extent into the core theory.

6. Finding relevant information in memory. The core theory of Collins
and Michalski (1989) assumed that information is found by a marker
passing search, and its impact on any question was evaluated by the
plausible reasoning theory. The data from the experiment suggested that
each piece of information that is found redirects the search process in
memory. Therefore, we think that it is possible to specify in more detail the
nature of the search to find relevant information to answer any question,
but we have not yet worked out the details in this revision of the core
theory.

7. Spatial, temporal, and meta-inferences. As stated in the core theory of
Collins and Michalski (1989), the protocols are full of plausible inferences
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based on spatial, temporal, and meta-knowledge. We think an extension of
the core theory to cover these inferences is possible, but it is a major
enterprise that we are not yet ready to tackle.

In summary, the experimental data suggest that we are in the ball park for
constructing a general theory of human plausible reasoning. However, there
is still much work to be done to accomplish this goal.
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